« Random Excellence: The Best of Barack | Main | The Oxford Project »

Saturday, 15 November 2008


Feed You can follow this conversation by subscribing to the comment feed for this post.

This time, I couldn't agree more!

Most of the agonizing about pixels and diffraction is nothing more than that: sheer agony.

There are soooo many factors at play, sensel size is indeed a very small one.
Pardon the pun. :)

Like you say: folks need to break those cameras out and go make nice photos, instead of pixel-peeping!

In practical terms, the best way to assure near-optimum performance from most lenses is to stop down at least one and no more than three stops from the full aperture. (There are a very few commercial camera lenses which produce their "best" images wide-open, but these are EXTREMELY expensive lenses.)

So many sources of blur - but the blur can also be a good thing, an artistic component in a photograph. It is not always the enemy.

Fun tech trivia, Ctein!

I was recently reminded of one, albeit uncommon, situation where this information would be useful as I was looking at some superb images of very old tapestries. Capturing accurate edge-to-edge detail for such 2D art photography is essential and trickier than it might seem. Diffractive distortion is certainly a performance boundary that such photographers must keep in mind.

But "In practical terms...", Bill Mitchell is absolutely correct regarding the optimum range for nearly all lenses.

A kindred aspect of lens performance that's worth mentioning is color rendition at various apertures, particularly in low-to-moderate light. Those who've not already explored this with their own lenses might profit from spending a quiet day doing so. I think you'll be at least mildly surprised at what you discover, and those discoveries may be very useful for your lens selections for certain situations.

In light of all the technical posts that have appeared in TOP in the last few weeks I thought this might be an appropriate reminder.

In a volume titled 'The Art of Photography', from the 1971 'Time-Life Library of Photography', is the following:

"Looking through a camera's lens and visualizing in his mind's eye a picture, the photographer himself -not his equipment- is the most important element in the art of photography. His unique vision of the world, his experiences and memories, as much as his skills, are his real creative tools. With them he selects and organizes the raw materials before him, creating a picture to which others can respond."


A serious question: when is it helpful to "understand" this stuff, as opposed to "know about it?" Is it possible simply to get a cookbook description -- do this, don't do that, for *this* effect? Or, if you must do *this*, you'll get *that*? That would be more useful for some of us, who are not particularly technically minded. It's like, why do I have to know how to grow wheat, if all I want to do bake a loaf of bread?

On the other hand, if there is a solid reason to know this stuff (as opposed to simple intellectual curiosity), then it would be good to know that, too.


Wise advice... For decades, large format photographers have known that objectively, tiny apertures decrease the absolute sharpness of an image.

But because LF has so much "extra" sharpness, many LF photographers choose to shoot as high as f/64 and beyond, in order to maximize depth of field.

In other words, sometimes, being able to get the foreground and background in focus is more important than the resolving power you lose.

With that said, because LF lenses in particular stop down so far, it's not unusual to see a lens that can resolve 80 lp/mm at f/8, but only 25 or 30 at f/32... Then the question becomes how large you want to enlarge, and what lp/mm you feel you need to hit to satisfy your eye.

Dear Bill,

I'd probably simplify even further and tell people that if they stop down two stops from wide open they will hardly ever likely to go wrong. Sure, they might be a little off from the truly-optimum aperture, but nobody but a pixel-peeper will ever see the difference.

Dear Ken,

The hard part about copying 2D art is obtaining perfect parallelism between the film/sensor plane and the subject plane. it's almost impossible to get that perfect even with a professional alignment tool, if you're talking about taking things down to the diffraction level. On the other hand, close-up photography is one of the few places where diffraction often bites unwary photographers. In normal use, it's hard to find a lens that will stop down so far that it will get you in really serious trouble with diffraction. But move down to 1:1 and all those apertures are doubled. Add to that the inclination of close-up photographers to stop down as far as they can to maximize depth of field. Too often they go so far that they're actually reducing (or entirely eliminating) depth of field, because all the allowable blur is getting eaten up by diffraction.

~ pax \ Ctein
[ Please excuse any word-salad. MacSpeech in training! ]
-- Ctein's Online Gallery http://ctein.com 
-- Digital Restorations http://photo-repair.com 

Dear John,

In my opinion, it's almost never helpful nor necessary to know what's "under the hood" so far as making good photographs goes.

If you skip over any sentence in my column that has numbers, equations, or scientific trivia in it, you've pretty much got the cookbook you asked for.

But I'm not much interested in writing just cookbooks. I'm more interested in explaining to people why the cookbook works the way it does. Doesn't keep you from extracting the cookbook information from what I write. Just requires you to do the extraction yourself. I think that most of my columns are accessible if every time you hit a hyper-technical or mathematical lump you say to yourself, "that doesn't matter, that doesn't matter, that doesn't matter." Because, by and large, it doesn't!

I'm also always trying to dispel myths. They're worse than no technical knowledge at all. They actually lead people astray. So, on a lesser level, I'm satisfied if someone reads my columns on diffraction and concludes that they really don't understand the subject. That's better than them thinking they do and having it wrong.

~ pax \ Ctein
[ Please excuse any word-salad. MacSpeech in training! ]
-- Ctein's Online Gallery http://ctein.com 
-- Digital Restorations http://photo-repair.com 

Dear Ben,

All very true! Plus, unless you're using a tensioned or vacuum film holder, focus error is a serious problem for sheet film photography (it's even pretty serious for medium format roll film). Runouts can amount to millimeters! So you have to stop down to get enough depth of focus over the entire sheet of film.

This is a bigger problem for distant subjects than near ones. A focus error on a nearby subject merely moves the point of correct focus a little or closer further from the camera. In most cases, you won't notice. But at infinity, everything is in a single optical plane, and it's either in focus or out.

If you've ever made a photograph of a far distant subject on medium or larger format and noticed that there were some "soft spots" in an image that you expected would be sharp everywhere, you've fallen victim to this.

It's one big reason why large format digital scanning backs were blowing away sheet film 15 years ago. Focus errors were drastically reduced.

~ pax \ Ctein
[ Please excuse any word-salad. MacSpeech in training! ]
-- Ctein's Online Gallery http://ctein.com 
-- Digital Restorations http://photo-repair.com 

Very well written! I would add two other sources of blur, digital specific: antialiasing filter, and JPG compression. The AA filter is a very unknown part of the sensor - did you see any characteristics of this device from Nikon, Sony etc.? (I didn't, and I don't think it is important for photographers, but the ads with microlenses nearly smaller than the wavelength make my crazy).
The JPG compression is more important for compact cameras, mobile phones and people with small memory cards. Compression limits the total amount of details, not local sharpnes, which results in a "plastic" look of areas with lot of small details or textures.

Dear Martin,

Those both have an effect on image quality, but they won't plug into the equations I gave. The impact of an anti-aliasing filter is complicated, and it's an integral part of the total behavior of the sensor. You can attempt to measure the resolution characteristics of the whole package (good luck getting a sensible answer!) but not the anti-aliasing filter and sensor separately.

In other words, as a photographer you should ignore it. It matters as much to you as the precise order of coating of layers in a color film. It's the total performance, only, that affects you.

JPEG compression does not produce blur; it creates artifacts and erases certain kinds of detail, but it often preserves other detail quite well. Again, not something you can use in these equations.

('Sides, nobody using really high compression ratios will care about this column.)

pax / Ctein

It seems to me you start using the term "airy disc" without having introduced it. I've no clue what it is. (Well, I have a clue, but.)

Thank you Ctein,

Great info. This subject of diffration seems to be used a lot recently on forums on well known sites (you know which ones). It is often used as a reason that you should not make APS-C sized sensors any higher resolving than 12-13 MP. I have seen a couple of reviews and even interviews, where it says that the reason the pr. pixel sharpness on the EOS 50D is worse than its predecessor, the EOS 40D, is because of diffraction. There is no point in going any higher than 12-13 MP. What is your take on that? From what I can digest from your article, diffraction is not the limiting factor in normal photography. Strangely I have seen a comment where someone had calculated that f7.9 was the limit on the 15MP 1.6 cropped sensor. From there on the resolution goes downhill, even in normal shooting situations. Is that not the fault of diffraction?
Thank you for taking this very talked about subject up and clearing quite a bit of the mist that used to hinder my sight almost completely.

Cool regards

Dear Jes,

I'm glad you enjoyed the article. I don't know which well-known sites you're talking about, because I don't read photographic websites. I look up specific information on them when a Google search finds it for me, but TOP is the only site I read regularly.

Now I am going to be exceedingly blunt.

Unless the people who are making these claims about the EOS models have demonstrated at least as good a working knowledge of the sources of image blur as this column, they don't know what they're talking about. You can ignore them.

As for resolution going downhill as you stop down a lens past the optimum aperture? I'm not going to sugar-coat this.

That is Photography 101!

The basic rules didn't change when people moved from silver to silicon, and what I was taught in my one and only introductory photography class was that if you make your photographs with the lens wide open they aren't likely to be really sharp, if you stop down a couple of stops they're likely to be much sharper, and if you stop down too far they get fuzzier again.

Does this really sound like rocket science to any of TOP's readers? I hope not!

The other thing I was taught, as very basic photography, was that unless you wanted a slow shutter speed for some reason, you didn't stop down any further than you needed to to get the depth of field you need it. But you did stop down as far as you needed to get adequate DoF.

Anyone who comments about image sharpness, sources of blur, and usable apertures who hasn't demonstrated they understand these simple basic concepts has no business issuing pronouncements.

I repeat; they don't know what they're talking about.

~ pax \ Ctein
[ Please excuse any word-salad. MacSpeech in training! ]
-- Ctein's Online Gallery http://ctein.com 
-- Digital Restorations http://photo-repair.com 

I enjoy your writing very, very much. Thank you for sharing your knowledge with such graspable wit.

The comments to this entry are closed.



Blog powered by Typepad
Member since 06/2007